Physiological response of cardiac tissue to bisphenol A: alterations in ventricular pressure and contractility.
نویسندگان
چکیده
Biomonitoring studies have indicated that humans are routinely exposed to bisphenol A (BPA), a chemical that is commonly used in the production of polycarbonate plastics and epoxy resins. Epidemiological studies have shown that BPA exposure in humans is associated with cardiovascular disease; however, the direct effects of BPA on cardiac physiology are largely unknown. Previously, we have shown that BPA exposure slows atrioventricular electrical conduction, decreases epicardial conduction velocity, and prolongs action potential duration in excised rat hearts. In the present study, we tested if BPA exposure also adversely affects cardiac contractile performance. We examined the impact of BPA exposure level, sex, and pacing rate on cardiac contractile function in excised rat hearts. Hearts were retrogradely perfused at constant pressure and exposed to 10(-9)-10(-4) M BPA. Left ventricular developed pressure and contractility were measured during sinus rhythm and during pacing (5, 6.5, and 9 Hz). Ca(2+) transients were imaged from whole hearts and from neonatal rat cardiomyocyte layers. During sinus rhythm in female hearts, BPA exposure decreased left ventricular developed pressure and inotropy in a dose-dependent manner. The reduced contractile performance was exacerbated at higher pacing rates. BPA-induced effects on contractile performance were also observed in male hearts, albeit to a lesser extent. Exposure to BPA altered Ca(2+) handling within whole hearts (reduced diastolic and systolic Ca(2+) transient potentiation) and neonatal cardiomyocytes (reduced Ca(2+) transient amplitude and prolonged Ca(2+) transient release time). In conclusion, BPA exposure significantly impaired cardiac performance in a dose-dependent manner, having a major negative impact upon electrical conduction, intracellular Ca(2+) handing, and ventricular contractility.
منابع مشابه
CALL FOR PAPERS Cardiovascular Responses to Environmental Stress Physiological response of cardiac tissue to bisphenol a: alterations in ventricular pressure and contractility
Nikki Gillum Posnack, Daina Brooks, Akhil Chandra, Rafael Jaimes, Narine Sarvazyan, and Matthew Kay Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia; and Department of Biomedical Engineering, School of Engineering and Applied Sciences, The George Washington University, Washington, District of Co...
متن کاملThe effect of resistance training on PI3K/mTORc1 signaling in left ventricular of diabetes rats
Background: Clinical evidence points to the effective role of genetic factors and intracellular signaling pathways in physiological cardiac hypertrophy. This study aimed to assess the response of PI3K/mTORc1 signaling pathway in cardiac tissue to resistance training in obese diabetic rats. Materials and Methods: For this purpose, 21 male wistar rats (220±20 g) were obese by 6 weeks high fat di...
متن کاملتأثیر هشت هفته تمرین تناوبی خیلی شدید بر بیان ژن خانواده miR-29 و هایپرتروفی عضلهی قلبی رتهای نر سالم
Background and Objective: In this study the effect of high intensity interval training on miR-29 expression that is expressed in the heart and in the regulation of physiological processes, including extracellular matrix and cardiac hypertrophy of healthy male rats were examined. Materials and Methods: 16 Wistar rats were divided into training (n=8) and control (n=8) groups. After one week of fa...
متن کاملاثرات قلبی– عروقی سه ترکیب صناعی جدید مهارکننده کانالهای کلسیمی در خرگوش
Background: Calcium channel blockers are important group of drugs that have been used in the treatment of a variety of cardiovascular diseases especially hypertension. In this study we have investigated the effects of three newly synthetized ester analogs of nifedipine (Compounds No. 1, 2 and 3) compared to nifedipine on mean arterial pressure, dp/dt (cardiac contractility index) and heart ra...
متن کاملThe Possible Role of TNF-alpha in Physiological and Pathophysiological Cardiac Hypertrophy in Rats
Pathological cardiac hypertrophy was produced by partial abdominal aortic constriction (PAAC) for 4 wk, while physiological cardiac hypertrophy was produced by chronic swimming training (CST) for 8 wk in rats. Pentoxifylline (30 mg/kg, 300 mg/kg i.p., day-1) treatment was started three days before PAAC and CST and it was continued for 4 wk in PAAC and 8 wk in CST experimental model. The left ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 309 2 شماره
صفحات -
تاریخ انتشار 2015